# Solve by Factoring y^4-17y^2=-16

Move to the left side of the equation by adding it to both sides.
Rewrite as .
Let . Substitute for all occurrences of .
Factor using the AC method.
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
Replace all occurrences of with .
Rewrite as .
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Rewrite as .
Factor.
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Remove unnecessary parentheses.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Set the first factor equal to .
Subtract from both sides of the equation.
Set the next factor equal to and solve.
Set the next factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Set the next factor equal to .
Subtract from both sides of the equation.
Set the next factor equal to and solve.
Set the next factor equal to .
Add to both sides of the equation.
The final solution is all the values that make true.
Solve by Factoring y^4-17y^2=-16
Scroll to top